The Sweep Line Paradigm

Computational Geometry - Recitation 2

Agenda

- Toy examples
- Line segment intersection
- Area of union of rectangles
- Minimal distance pair

Given a set of 1D segments, what is the union of them all?

• Solution: Sort all the points, and count the number of 'active' segments.

- We have traversed a discrete set of **Events**, in a certain **Order**, while maintaining some **Status** of the algorithm.
- Events [What data was processed]: start of segment, end of segment.
- Order [In what order we traverse the events]: From left to right
- Status [Additional information maintained]: number of active segments.
- Complexity: $O(n \log n)$

An archer is surrounded by a set of barricades.
 What are his lines of sight?

• Order: Scan the segments by angle.

• Status: Number of 'active' barricades.

• Init in O(n).

• Events:

- Start of a segment: increase number of barricades.
- End of a segment: decrease number of barricades.
- Report angles with 0 barricades.

- An archer is surrounded by a set of barricades.
 What are his lines of sight?
- Order: Scan the segments by angle.
- Status: Number of 'active' barricades.
 - Init in O(n).

• Events:

- Start of a segment: increase number of barricades.
- End of a segment: decrease number of barricades.
- Report angles with 0 barricades.

- An archer is surrounded by a set of barricades.
 What are his lines of sight?
- Order: Scan the segments by angle.
- Status: Number of 'active' barricades.
 - Init in O(n).

• Events:

- Start of a segment: increase number of barricades.
- End of a segment: decrease number of barricades.
- Report angles with 0 barricades.

- An archer is surrounded by a set of barricades.
 What are his lines of sight?
- Order: Scan the segments by angle.
- Status: Number of 'active' barricades.
 - Init in O(n).

• Events:

- Start of a segment: increase number of barricades.
- End of a segment: decrease number of barricades.
- Report angles with 0 barricades.

An archer is surrounded by a set of barricades.
 What are his lines of sight?

- Order: Scan the segments by angle.
- Status: Number of 'active' barricades.
 - Init in O(n).

• Events:

- Start of a segment: increase number of barricades.
- End of a segment: decrease number of barricades.
- Report angles with 0 barricades.

An archer is surrounded by a set of barricades.
 What are his lines of sight?

- Order: Scan the segments by angle.
- Status: Number of 'active' barricades.
 - Init in O(n).

• Events:

- Start of a segment: increase number of barricades.
- End of a segment: decrease number of barricades.
- Report angles with 0 barricades.
- Complexity: $O(n \log n)$

- An archer is surrounded by a set of barricades.
 Which barricades are visible to him?
- Order: Scan the segments by angle.
- **Status:** Set of active barricades, sorted by the distance from the archer.
- Events:
 - Start of a segment: Add segment to the status DS.
 - End of a segment: Remove segment from the status DS.
- Report all segments which was closest at some point.
- Complexity: $O(n \log n)$

Segment Intersection

Segment Intersection

- Given a set of n segments, report all intersection points.
- Naïve algorithm: Check all segment pairs, $O(n^2)$.
- Sweep line algorithm:
- Order: scan from left to right.
- **Status:** segments intersecting the sweep line. (Ordered by intersection point).
- Events: Segment start, Segment end and Segments intersection.
- Check intersection only between adjacent segments in the status DS.

Dynamic events!

Handle event: None

Events

$Start(S_1)$	
$Start(S_2)$	
$Start(S_3)$	
$End(S_1)$	
$Start(S_4)$	
$End(S_4)$	
$End(S_2)$	
$End(S_3)$	

Status

Ø

Sweep line

Handle event: $Start(S_1)$

Events

$Start(S_2)$	
$Start(S_3)$	
$End(S_1)$	
$Start(S_4)$	
$End(S_4)$	
$End(S_2)$	
$End(S_3)$	

Status

 S_1

Handle event: $Start(S_2)$

Events

$Start(S_3)$		
$Intersection(S_1, S_2)$		
$End(S_1)$		
$Start(S_4)$		
$End(S_4)$		
$End(S_2)$		
$End(S_3)$		

S_1
S_2

Handle event: $Start(S_3)$

Events

$Intersection(S_1, S_3)$		
Intersection (S_1, S_2)		
$End(S_1)$		
$Start(S_4)$		
$End(S_4)$		
$End(S_2)$		
$End(S_3)$		

S_1
S_3
S_2

Handle event: $Intersection(S_1, S_3)$

Events

$Intersection(S_1, S_2)$		
$End(S_1)$		
$Start(S_4)$		
$End(S_4)$		
$End(S_2)$		
$End(S_3)$		

S_3	
S_1	
S_2	

Handle event: $Intersection(S_1, S_2)$

Events

$End(S_1)$	
$Start(S_4)$	
$End(S_4)$	
$End(S_2)$	
$End(S_3)$	

S_3	
S_2	
S_1	

Handle event: $End(S_1)$

Events

$Start(S_4)$	
$End(S_4)$	
$End(S_2)$	
$End(S_3)$	

S_3	
S_2	

Handle event: $Start(S_4)$

Events

$Intersection(S_2, S_4)$	
$End(S_4)$	
$End(S_2)$	
$End(S_3)$	

S_3	
S_2	
S_4	

Handle event: $Intersection(S_2, S_4)$

Events

$Intersection(S_3, S_4)$	
$End(S_4)$	
$End(S_2)$	
$End(S_3)$	

S_3	
S_4	
S_2	

Handle event: $Intersection(S_3, S_4)$

Events

$End(S_4)$
$End(S_2)$
$End(S_3)$

S_4
S_3
S_2

Handle event: $End(S_4)$

Events

$End(S_2)$	
$End(S_3)$	

S_3	
S_2	

Handle event: $End(S_2)$

Events

Status

 $End(S_3)$

 S_3

Handle event: $End(S_3)$

Events

Status

Ø

Ø

Segment Intersection

- Given a set of n segments, report all intersection points.
- Naïve algorithm: Check all segment pairs, $O(n^2)$.
- Sweep line algorithm:
- Order: scan from left to right.
- **Status:** segments intersecting the sweep line. (Ordered by intersection point).
- Events: Segment start, Segment end and Segments intersection.
- Check intersection only between adjacent segments in the status DS.
- Complexity: $O(n \log n)$

Dynamic events!

What is the total area covered by a set of rectangles?

- What is the total area covered by a set of rectangles?
- Order: left to right
- Events: begin and end of a rectangle
- Status: active rectangles

- Status: active rectangles
- How do we maintain the active rectangle set?
- More importantly, how do we find the total length covered by the active rectangle?
- Naïve implementation: Recalculate the union each time (using example #1).
 - Complexity: $O(n^2)$.
- Better implementation: Use augmented BST (classic DS exercise). Complexity: $O(n \log n)$.

• Problem: Find the closest pair of points.

- Problem: Find the closest pair of points.
- Naïve algorithm: Check all pairs, $O(n^2)$
- Sweeping idea:
- Events: All the points
- Order: left to right
- **Status:** minimal distance seen so far, d.

 And two BSTs of all the points in a strip of width d. one sorted by the y coordinate, and another sorted by the x coordinate.

- Handle event:
- Compare the distance with the relevant points.
 - Using the sorted by y tree.
- Update *d* if needed.
- Remove from both trees the points that now are not part of the strip.
 - Using the sorted by x tree.